Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

نویسندگان

  • Xiaokun Han
  • Qingjun Guo
  • Congqiang Liu
  • Pingqing Fu
  • Harald Strauss
  • Junxing Yang
  • Jian Hu
  • Lianfang Wei
  • Hong Ren
  • Marc Peters
  • Rongfei Wei
  • Liyan Tian
چکیده

Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements

[1] Atmospheric sulfate aerosols have a cooling effect on the Earth’s surface and can change cloud microphysics and precipitation. China has heavy loading of sulfate, but their sources and formation processes remain uncertain. In this study we characterize possible sources and formation processes of atmospheric sulfate by analyzing sulfur isotope abundances (S, S, 34S, and S) and by detailed X‐...

متن کامل

DIAGENESIS AND RESERVOIR QUALITY EVOLUTION OF SHELF-MARGIN SANDSTONES IN PEARL RIVER MOUTH BASIN, SOUTH CHINA SEA

A study of the diagenetic evolution of sandstones from Panyu low-uplift in the Pearl River Mouth Basin was carried out to unravel the controls on shelf margin sandstone reservoir quality. The reservoir rocks, Oligocene volcanic clastic sandstones of the Zhuhai Formation, have a burial depth of 2765 to 3440 m. 70 samples were studied using the granulometric analyses, X-ray diffraction (XRD) anal...

متن کامل

Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected ...

متن کامل

Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements ...

متن کامل

Reply to Cao and Zhang: Tightening nonfossil emissions alone is inefficient for PM2.5 mitigation in China.

In the short commentary by Fang Cao and Yan-Lin Zhang, the authors suggest that tightening nonfossil emissions control may serve as a potential opportunity for fine particulate matter (PM with the particle size smaller than 2.5 μm or PM2.5) mitigation in China (1). Cao and Zhang state that “Guo et al.’s. . .important new finding fails to consider particles emitted by nonfossil sources (e.g., bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016